Watershed Management in Frederick County

Watershed Management Section

Department of Program Development and Management
Division of Public Works

October 21, 2009

Watershed Management Overview

- Comply with NPDES permit
 - Identify resources and impairments
 - Map in GIS (18 different data layers)
 - Monitor water bodies
 - Conduct studies and management programs
 - Outreach and education
 - Identify solutions to stream impairments in urban areas
 - Correct problems found in urban

Resource Identification: Fish Example

- County and State stream surveys have found >48 fish species (4th highest in MD counties).
- Small streams serve as nursery for larger gamefish; Frederick County streams support...
 - Largemouth and smallmouth bass;
 - Brook trout (MD's only native trout) once widespread, now only at about 4% of sites.
 - Brown trout;
 - American eel;
 - Bluegill and 5 other sunfish types;
 - 4 catfish relatives;
 - 20 minnow species (fish food!)
- Brook trout populations are expected to go extinct this century due to climate change.

GIS Mapping: Pollutant Loading Example

Smaller catchment units mapped within larger watersheds

Pollutant loads calculated by smaller catchments within

watersheds

 Higher loading areas targeted for outreach.

• Stream impairments from nutrients and sediment are on the rise.

Linganore Watershed has regulatory limits on Phosphorus and Sediment known as Total Maximum Daily Loads

Water Monitoring: Urbana PUD Example

- County monitoring of Peter Pan Run in Urbana PUD during development (better than average controls)
- Increased storm flows, decreased baseflows
- Increase in "urban pollutants" including zinc, cadmium, copper, lead, total petroleum hydrocarbons, phenols, oil and grease, sediment, phosphorus, fecal coliform.
- 260,000 1,750,000 lbs sediment lost from Peter Pan Run every year since 1999.
- Streams are becoming more sediment-embedded, which negatively affects habitat.
- Most water bodies now have regulatory limits set on sediment. We are not meeting the limits.

Cumulative erosion

NPDES Compliance Activities: Management Programs

- Triennial preventative maintenance inspections of all SWMF
- Annually, field screen at least 150 outfalls (DPDR);
- Maintain illicit discharge detection and elimination program and respond to illegal dumping and spills;
- Maintain an acceptable erosion and sediment control program (DPDR);
- Develop and implement a plan to reduce pollutants associated with road maintenance activities (with Highway Operations);
- Examine the use, control, and reduction of herbicides, pesticides, and fertilizers for all Frederick County government departments (coordination with many agencies);

NPDES Compliance Activities: Public Outreach and Education

- NPDES Program offers significant public outreach
- Monocacy and Catoctin Watershed Alliance example
 - Non-advocacy working group facilitated by County's grant-funded
 Community Restoration Coordinator
 - Focus on outreach and vol. restoration to protect water quality and habitat
 - Partners include USGS, DNR Fisheries and Forest Service, MDE, Community Commons, Audubon Naturalist Society, Canaan Valley Institute, Potomac Conservancy, Catoctin Mountain Park, Hood College...

- Significant funding leverage; project coordination; volunteers; and other project resources.
- Great Frederick Fair booth
- Watershed Stewards program, road signs
- "Greener Lifestyles" publications
- Volunteer opportunities
- Workshops
- Web resources
- Landowner outreach

- Completed Watershed Assessments for Ballenger, Lower Bush, Lower Linganore, Bennett Creeks, Upper Monocacy and Lower Monocacy River Watersheds (~60% of county).
- Conducted Restoration/Retrofit Reports for Ballenger, Lower Bush, Linganore, Bennett.
- Prioritized sites for community restoration, CIP.
- Linganore CIP example:
 - Selected Pinecliff Park stream restoration (in design)
 - Coordinated with Parks
 - Will protect park assets, water line, road culvert from erosion.

Candidate sites for restoration in the Linganore Watershed based on Restoration/Retrofit Assessment. Map and detail.

Ballenger Creek Stream Restoration CIP example

Map of project site, debris jam before, stabilization after

- Restored channel at Ballenger Creek Elementary School;
- Multiple benefits provided through coordination with FCPS, DUSWM, Parks;
 - Stabilized banks, reduced sediment, removed debris jams;
 - Protected sewer line;
 - Created area for Ballenger Creek trail on bank and saved Parks \$415K from having to install pedestrian bridge;
 - Improved habitat for fish, birds, other organisms;
 - Provided improved aesthetics to school; school thrilled with project.

Urbana High School Stormwater Retrofit CIP example

Bioretention and pavers in courtyard

UHS bus lot before and after

- Partnered with FCPS
- Existing stormwater pond treated volume but not quality;
- Constructed bioretention facilities in courtyard and bus lot to treat quality;
- Urbana High School students selected native plant list, will maintain garden;
- Facilities look like landscaping feature;
- Provided porous pavers at emergency exits; school extremely pleased with this feature, which adds safety and protects grass.
- Water quality monitoring results will be used by school as teaching tool.

672-acre impervious area reduction goal for last permit cycle; expect MDE credit for restoration of 1302 acres:

68 ac. CIP projects (including OPM redevelopment projects);

88 ac. Watershed Alliance partner projects;

937 ac. Street sweeping (Highway Operations);

209 ac. Community Restoration Projects:

The High Cost of Restoration

	Impairment	Miles	Cost	Avg Cost/mile
Corsica River, MD	Nutrients	7.6	\$17,500,000	\$2,300,000
Little Laurel Run, PA	Metals	3	\$1,048,013	\$349,338
Conewago Ck, PA	Nutrients	17	\$4,300,000	\$252,941
Bear Ck, PA	Metals	5	\$964,000	\$192,800
Catawissa Ck, PA	Metals	57.9	\$3,500,000	\$60,440
Thumb Run, VA	Bacteria	17	\$2,450,000	\$144,117
Willis River, VA	Bacteria	30	\$2,794,160	\$93,138
Muddy Creek, VA	Bacteria	9	\$2,612,000	\$290,222

Where do we go from here?

